Model Reduction for Nonlinear Control Systems using Kernel Subspace Methods
نویسندگان
چکیده
We introduce a data-driven model approximation method for nonlinear control systems, drawing on recent progress in machine learning and statistical dimensionality reduction. The method is based on embedding the nonlinear system in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where linear balanced truncation may be carried out implicitly. This leads to a nonlinear reduction map which can be combined with a representation of the system belonging to a RKHS to give a closed, reduced order dynamical system which captures the essential input-output characteristics of the original model. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding. Empirical simulations illustrating the approach are also provided.
منابع مشابه
Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملKrylov subspace methods for model order reduction of bilinear control systems
We discuss the use of Krylov subspace methods with regard to the problem of model order reduction. The focus lies on bilinear control systems, a special class of nonlinear systems, which are closely related to linear systems. While most existent approaches are based on series expansions around zero, we will extend the underlying ideas to a more general context and show that there exist several ...
متن کاملKrylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations
We discuss Krylov-subspace based model reduction techniques for nonlinear control systems. Since reduction procedures of existent approaches like TPWL and POD methods are input dependent, models that are subject to variable excitations might not be sufficiently approximated. We will overcome this problem by generalizing Krylov-subspace methods known from linear systems to a more general class o...
متن کاملFast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction
Projection-based model reduction techniques rely on the definition of a small dimensional subspace in which the solution is approximated. Using local subspaces reduces the dimensionality of each subspace and enables larger speedups. Transitions between local subspaces require special care and updating the reduced bases associated with each subspace increases the accuracy of the reduced-order mo...
متن کاملA Subspace Kernel for Nonlinear Feature Extraction
Kernel based nonlinear Feature Extraction (KFE) or dimensionality reduction is a widely used preprocessing step in pattern classification and data mining tasks. Given a positive definite kernel function, it is well known that the input data are implicitly mapped to a feature space with usually very high dimensionality. The goal of KFE is to find a low dimensional subspace of this feature space,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1108.2903 شماره
صفحات -
تاریخ انتشار 2011